European Comet Conference Ondrejov 2015

Total Comet Magnitudes from CCD- and DSLR-Photometry

Thomas Lehmann, Weimar (Germany)

- 1. Introduction
- 2. Observation
- 3. Image Reduction
- 4. Comet Extraction
- 5. Large Aperture Photometry
- 6. Light Curves of Bright Comets
- 7. Faint or Diffuse Comets
- 8. Summary

1. Introduction

- Motivation and Background
 - Comets are exciting objects!
 - Photometry is fundamental to describe cometary activity, but CCD and DSLR photometry of extended objects poses a challenge
 - Goal: closer match of visual brightness estimates
 - Some experience in image reduction (IRAF, MIDAS, ...) and stellar photometry
- Why not stick to visual observations?
 - CCD and DSLR imaging is 'easy'
 - Reaching fainter magnitude limits
 - Larger number of comparison stars
 - Allow for later verification or check of results
 - Create nice images to show to your friends

2. Observation

Definition of the goal

- Allow for brightness estimates of brighter comets to complement and possibly extend visual observations using DSLR or CCD camera (with green filter)
- Do photometric calibration using unsaturated field stars from single reference catalog

Instrumentation

- Fast telescope or telelens (f/3 to f/5)
- Suitable CCD (large size, linear response) or DSLR camera
- Focussing aid (Bahtinov mask)
- Motorized mount

- Site considerations
- Currently used setups
 - Local: Newton f=800mm f/4 with DSLR Pentax K5IIs on Celestron ADM
 - Mobile: Telelens f=200mm f/2.8 with DSLR Pentax K5IIs on Astrotrac
 - Remote: Refractor FSQ 106mm f/5.0 with CCD SBIG STL11000M (iTelescope.net from New Mexico or Australia)
- Observation planning
 - Avoid bright stars close to comet
 - Check comets motion (ideally cover 5-10 x FWHM of stars)
 - Choose appropriate f-stop, gain (ISO), exposure time
 - Image series to increase dynamic range, apply dithering, exclude satellite trails

Telelens 200mm f/2.8 with DSLR Pentax K5IIs on Astrotrac

3. Image Reduction

- Basic image reduction is the same for CCD and DSLR observations
- Calibrations
 - Bias and dark: $f(T, t_{exp}, gain)$
 - High quality flat-field (white screen, twilight sky, super-sky-flat)
 - Verification of Sensor Linearity (Pentax K5IIs, ISO 200)
 sensor linearity gain 0.54e-/ADU

- Peculiarities of DSLR cameras
 - RAW-development using modded dcraw
 - Bayer matrix requires RGB-Interpolation
 - Sampling depends on color (possible undersampling of stars)
 - internal bias- and dark-subtraction
 - internal noise
 reduction on
 RAW data (e.g.
 Nikon "star eater")

- Registration and stacking of images
 - stack on stars (excluding bad image regions like satellite trails)
 - WCS calibration (e.g. telelens 2.8/200mm: pixel scale 5", rms=0.3")
 - stack on comet using comets motion according to ephemerides

Software

- Imagemagick, Netpbm and other standard tools available for Linux
- sextractor, scamp, swarp (E. Bertin, IAP Paris)
- wcstools (J. Mink, SAO Harvard)
- cdsclient (CDS Strasbourg)
- DS9, ImageJ for image display and interactive analysis
- Shell scripts to combine all the tools

4. Comet Extraction

Outline

- identify bright, isolated stars to extract star-PSF and startrail-PSF
- identify field stars in a region around the comet
- aperture photometry of field stars (arbitrary zero point, aperture depending on FWHM)
- remove star trails from comet stack using scaled startrail-PSF
- problematic cases: double stars, saturated stars

Example:

Comet C/2014 Q2 (Lovejoy), 2015-02-13, telelens 200mm, Pentax K5IIs, 45x 1min

Comet Stack

... after subtraction of ~3000 star trails

... after contrast stretch

5. Large Aperture Photometry

Comet image:

- heavy smoothing and contrast streching to determine coma extent and background area(s)
- measure counts for comet and background
- determine background error (e.g. for DSLR imaging: +-0.2% of background signal)

Star stack:

- query photometric reference catalog (Tycho-2, GSPC2)
- automatic cross-matching with stars in the image within given distance to comet (for wide field images)
- aperture photometry of stars
- photometric calibration of the arbitrary magnitude scale (removal of outliers, if necessary correct for differential extinction)
- determine magnitude correction for very large apertures

 Example: Comet C/2014 E2 (Jacques), 2014-05-03, altitude 11°, telelens 200mm, Pentax K5IIs

6. Light Curves of Bright Comets

- C/2012 K1 (PANSTARRS)
 - 42 DSLR observations
 - 22 CCD observations
 - June 2013 May 2015
- C/2014 Q2 (Lovejoy)
 - 17 DSLR observations
 - 42 CCD observations
 - September 2014 May 2015

C/2012 K1 (PANSTARRS) - Light Curve 2013 - 2015

C/2012 K1 (PANSTARRS) - Bright Section (2014)

C/2012 K1 (PANSTARRS) - Model Fit (2013 - 2015)

7. Faint or Diffuse Comets

- C/2010 S1 (LINEAR)
 - bright, distant (r_{min}=5.9 AU) object, with coma ~1' and tail
 - scatter of data points (DSLR): rms=0.1mag

7. Faint or Diffuse Comets

- 32P/Comas Sola
 - Newton f=800mm f/4, Pentax K5IIs, 40-70min exposure time:

- geometric projection affects definition of coma size
- comet tail may contribute to large aperture photometry

- 22P/Kopff
 - comet with large diffuse coma

- scatter of mag estimates: large aperture: 0.25mag vs. fixed aperture of 60": 0.09mag
- correlation between 'coma diameter' and brightness

7. Summary

- Large aperture photometry has been demonstrated to match visual observations for comets as bright as 4mag
- Internal scatter of rms<=0.1mag for most comets brighter 10mag using small telescopes
- No evidence of systematic instrumental differences (<0.1mag)
- Limiting factor for photometric accuracy of
 - bright comets: photometric calibration (accuracy of reference stars)
 - faint diffuse comets: local background variation (flat field, galactic cirrus, halos around bright field stars, reflections, ...)

- Large Aperture Photometry does NOT replace other techniques
 - monitoring of faint comets for outburst activity (timescale of days) is best achieved by small, fixed aperture photometry (→ FOCAS)
 - physical dust parameters should be derived from red images,
 preferably using narrow band filters (→ CARA, Afρ)

Future work

- follow bright comets over large time span
- analyze color information from DSLR data
- wish to work on fainter comets using larger telescopes
- wish to develop more user-friendly reduction procedure

Thanks!

